iCONNECT

User Guide

Suite 100
St. Louis, MO 63108
USA
1-866-646-2346
1-314-678-6100

Contact Us

Stereotaxis, Inc.
4320 Forest Park Avenue
Suite 100
St. Louis, MO 63108
USA
www.stereotaxis.com
1-314-678-6100 (Stereotaxis- US)
0031.75.77.133.13 (Stereotaxis- EU)

1-314-678-6200 (TeleRobotic Support Team- US)
1-866-269-5268 (TeleRobotic Support Team- US)

European Authorized Representative

MDSS
EC|REP
(Medical Device Safety Service GmbH)
Schiffgraben 41
30175 Hannover, Germany

Patents

Manufactured under one or more of the following United States patents:

Niobe

6,975,197; 7,019,610; 7,161,453; 7,305,263; 7,313,429; 7,495,537; 7,772,950; 7,966,059

Manufactured under the following European patent:
EP 1488431 issued in Germany, France, and United Kingdom

Genesis RMN

7,774,046

Navigant

7,516,416; 7,537,570; 7,540,288; 7,540,866; 7,543,239; 7,627,361; 7,630,752;
7,657,075; 7,708,696; 7,751,867; 7,756,308; 7,761,133; 7,769,428; 7,831,294;
7,853,306; 8,024,024; 8,192,374; 8,369,934; 8,721,655; 9,314,222
Manufactured under the following European patents:
EP 1682024 issued in Germany, France, and Great Britain; EP 1769 390, issued in Germany, France, and United Kingdom

Other patents issued and pending.

Trademarks

- Cardiodrive, Navigant, and Niobe are trademarks of Stereotaxis, Inc., registered in the United States, the European Community, United Kingdom, and Japan.
- Genesis RMN is a trademark of Stereotaxis, Inc., registered in the United States.
- Odyssey is a trademark of Stereotaxis, Inc., registered in the United States, the European Community, and the United Kingdom.
- Odyssey Cinema is a trademark of Stereotaxis, Inc., registered in the European Community and United Kingdom.
- Odyssey Vision, Bullseye, NaviLine, NaviView, QuikCAS, and TargetNav, are trademarks of Stereotaxis, Inc.

Other Trademarks

- CARTO3, SmartAblate, Navistar, Thermocool, Celsius, and Celsius Thermocool are registered trademarks of Biosense Webster.
- Rhythmia and Maestro 4000 are trademarks of Boston Scientific.
- Ampere and EnSite Precision are trademarks of St. Jude Medical.
- HAT 500 is a registered trademark of Osypka.
- AcQMap is a registered trademark of Acutus Medical.

All other brand names, product names, or trademarks found in this document are the property of their respective owners.

EMC Directive Statement

$\left.\begin{array}{ll}\text { EMC Directive Compliance } & \begin{array}{l}\text { This equipment was tested and found to conform to the } \\ \text { Medical Directive 93/42/EEC for electromagnetic compatibility. } \\ \text { Compliance with this Directive is based upon compliance with }\end{array} \\ \text { the following harmonized standards: }\end{array}\right\}$

When operating this equipment, verify that other devices installed near it conform to the applicable EMC standards for that device. This equipment is designed to be installed and operated in a Professional Healthcare Facility Environment.

Safety Standard Statement

Safety Standard Compliance
This equipment was tested and found to conform to the following IEC 60601-1 Medical Electrical Equipment General Requirements for basic safety and essential performance test specifications:
Standard: CAN/CSA-C22.2 No. 60601-1:14
ANSI/AAMI ES60601-1:2005+A2 (R2012) +A1
IEC 60601-1: 2005 + CORR. 1:2006 + CORR. 2:2007 + AM1:2012 (or IEC 60601-1: 2012 reprint)

Related documents
 \square

HDW-0312 Niobe User Guide
HDW-0358 Genesis RMN User Guide
HDW-0372 Navigant User Guide

Celsius Catheter Cable (001-009071-1) IFU
Magnoflush Catheter Cable (001-009073-1) IFU

CARTO System Cable (001-009075-1) IFU
Maestro System Cable (001-009077-1) IFU
Stockert System Cable (001-009078-1) IFU
Ampere System Cable (001-009079-1) IFU
HAT500 System Cable (001-009080-1) IFU
Navistar Adapter System Cable (001-009081-1) IFU

Respective documentation for compatible devices and/or systems.

Operating conditions

Temperature: $15^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$
Humidity: 20\% to 75\%, non-condensing
Atmospheric pressure: 70 kPa to 106 kPa

Storage and transport conditions

Temperature: $-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Relative humidity: 20\% to 95\%
Atmospheric pressure: 70 kPa to 106 kPa

Equipment information

iCONNECT Model no.: 001-009040-1
Classification: Class II Defibrillation-proof Type CF Applied Part equipment Mode of operation: Continuous

Performance specifications:

Parameter	Specification
System Weight	1.0 kg
Maximum Power Draw	0.25 Amp @ 24 VDC

Catheter Cable Model no.:

Celsius	$001-009071-1$
Magnoflush	$001-009073-1$

System Cable Model no.:

CARTO	$001-009075-1$
SmartAblate	$001-009076-1$
Maestro	$001-009077-1$
Stockert	$001-009078-1$
Ampere	$001-009079-1$
HAT500	$001-009080-1$
Navistar Adapter	$001-009081-1$
SmartAblate - EnSite	$001-009091-1$
HAT500 - EnSite	$001-009092-1$

WARNING: No modification of the iCONNECT System is allowed. No user-serviceable parts are inside iCONNECT. The user should not remove the cover or attempt to disassemble any portion of the iCONNECT System.

Notice to the User and/or Patient

Any serious incident that has occurred in relation to the device should be reported to the manufacturer and the competent authority of the Member State in which the user and/or patient is established.

Cover art

Cover art © 2020 Stereotaxis, Inc.

Contents

1 Overview 1
1.1 Introduction 1
1.2 About These Instructions 1
1.3 Indications 1
1.4 Companion Systems 1
1.5 Required Training 2
1.6 Graphics and Symbols 3
1.7 Glossary 5
1.8 Safety Instructions 6
1.9 Electromagnetic Compatibility Information 7
2 Hardware 12
2.1 Electronics Hub 12
2.2 Connection Cables 13
2.3 Installation 14
3 Software 17
3.1 Contact Indication 17
3.2 Impedance Graph 19
3.3 Hardware Status Panel Display 20
4 Maintenance 21
4.1 Cleaning 21
4.2 Sterilization of Cables 21
5 Troubleshooting 21
Appendix A: CARTO System Cable and Navistar Adapter Cable 24
Instructions for Use 24

1 Overview

1.1 Introduction

iCONNECT is used in conjunction with a Stereotaxis robotic magnetic navigation system (RMNS). The iCONNECT System provides an electronics hub allowing users to connect a combination of compatible catheters, mapping systems, and ablation generators. In addition, the iCONNECT System gathers and provides catheter impedance values to the Navigant ${ }^{\circledR}$ Workstation (NWS) System where cardiac wall contact is determined.

1.2 About These Instructions

The purpose of this guide is to provide the user of the iCONNECT System with instructions for operating the equipment and using the Navigant software starburst indicator.

The instructions provide information for installing and maintaining the iCONNECT System and for understanding the reporting indicators on the equipment as well as through the Navigant software.

1.3 Indications

The iCONNECT System is an accessory device that indicates when the tip of a compatible catheter is in contact with the heart wall when used in conjunction with a compatible Magnetic Navigation System.

1.4 Companion Systems

iCONNECT may be used with the following magnetically-compatible devices:

- NAVISTAR® RMT Catheter
- NAVISTAR® THERMOCOOL® RMT Catheter
- CELSIUS® RMT Catheter
- CELSIUS® THERMOCOOL® RMT Catheter
- MedFact MagnoFlush Catheter
iCONNECT may be used with the following ablation generators:
- Osypka HAT 500® Generator
- Ampere ${ }^{\mathrm{TM}}$ RF Generator
- Maestro 4000^{TM} Cardiac Ablation System
- Biosense Webster Stockert 70 RF Generator
- Biosense Webster SmartAblate RF Generator
iCONNECT may be used with the following mapping systems:
- CARTO® 3
- Acutus AcQMap® ${ }^{\circledR}$
iCONNECT communicates with a Stereotaxis RMNS which integrates with a compatible, digital fluoroscopy system to provide real-time guidance to the physician during an interventional procedure.

1.5 Required Training

The Stereotaxis representative provides training and associated materials for safe and effective use of iCONNECT's primary operating functions based on the intended use of the system.

1.6 Graphics and Symbols

The following graphics and symbols are used in these instructions:

WARNING	d	WARNING indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.
CAUTION	\&	CAUTION indicates a potentially hazardous situation which, if not avoided, could result in injury to patient or operator or damage to the equipment.
Note	i	Note identifies information that could affect the outcome or results of the procedure.

Warnings and Cautions precede the text and any procedure involving a clear risk to the operator(s), the patient, or the equipment. General Warnings and Precautions are listed earlier in the document in 1.6 Safety Instructions. Pay close attention to the instructions that accompany any warning, caution, and note symbols.

The following symbols are used in this document and/or on or near the system components:

Symbol	Name	Description
	Defibrillationproof Type CF Applied Part	Indicates equipment suitable for direct cardiac application.
	Consult Instructions	See other material for additional information or instruction.
STERILEEO	Sterile	Sterile via ethylene oxide sterilization method.
	Non-Sterile	Device has not been sterilized.
W	Manufacturer	Name and address of the manufacturer of the product.
EC ${ }^{\text {REPP }}$	European Representative	Name and address of the authorized representative in the European Community.
REF	Reference	Part Number
LOT	Lot Number	
	Expiration Date	

1.7 Glossary

The following terms appear in this document:

Term	Description
C-Arm	X-ray image intensifier that produces live X-ray images displayed on a monitor and named because of its configuration, with the top part of the C extending over the patient and the bottom extending under.
iCONNECT Electronics Hub	Hardware portion of the system that allows users to connect a combination of catheters, mapping systems, and ablation generators.
iCONNECT System	Gathers and provides catheter impedance values to Navigant where contact with the heart wall is determined.
EP	Electrophysiology.
Fluoro	Fluoroscopic, or Fluoroscopy.
Fluoroscope	X-ray image intensifier that produces live X-ray images displayed on a monitor. Also called X-ray or C-Arm.
Robotic Magnetic Navigation (RMN) System	A medical platform that enables physicians to navigate catheters, guidewires and other magnetic interventional devices through the blood vessels and chambers of the heart to treatment sites and then to effect treatment; system consists of computer-controlled magnets that assist physicians in orienting and steering compatible, magneticallyadapted devices and works in conjunction with Navigant Workstation.
Impedance Graph	Feature of Navigant that helps the user determine cardiac wall contact.
Navigant Workstation (NWS)	Platform of software applications designed to simplify clinical workflows. The Navigant product, when it does not include the Odyssey add-on, provides enhanced integration of catheterization and electrophysiology labs and improved automation during magnetic navigation of medical devices. (Available only in magnetic labs.)
Starburst	Navigant software feature of the iCONNECT System that indicates when the catheter tip is in contact with the heart wall.

1.8 Safety Instructions

iCONNECT features do not replace the physician's knowledge, expertise, or judgement.

1.8.1 Warnings

WARNING: Federal law (USA) restricts this device to sale by or on the order of a physician.

WARNING: The iCONNECT System should be used only by qualified medical professionals who have been thoroughly trained in its use.

WARNING: Clinical decisions should not be based solely on impedance values. Additional sources of contact data should be used to confirm contact indication.

WARNING: The user should not attempt to upgrade, configure, or run any other software programs on the RMNS computers, other than those specifically called out in the product documentation.

WARNING: The graphical representation of the catheter on the RMNS display screen represents an approximate location and orientation of the catheter inside the patient's heart after the user acquires a new fluoro image and subsequently transfers it from the X-ray.

WARNING: The operator should always confirm device location using a live fluoroscopic image.

WARNING: Always verify catheter motion using live fluoroscopy images. Stop immediately if catheter motion can no longer be verified.

WARNING: If unexpected catheter motion occurs during ablation, stop RF energy delivery.

WARNING: If there is a cybersecurity breach during a procedure, press the Estop button to stop all device activities. Contact the Emergency call center to report the suspicious activity prior to resumption of the procedure.

WARNING: Catheter cables shall be re-sterilized after use to avoid potential for patient infection.

WARNING: Cables shall not be re-sterilized and used beyond indicated maximum as this could induce noise on ECG or mapping system.

WARNING: User shall not use devices for which packaging has been damaged.
WARNING: Non-approved companion cable systems shall not be connected as this could result in damage for either product.

1.8.2 Precautions

CAUTION: If a patient is to receive a permanent pacemaker or implantable cardiac defibrillator (ICD) de novo, the RMNS magnets must be kept in the Stowed position. The magnets should remain in the Stowed position from the moment the ICD/pacemaker is brought inside the Procedure Room until the patient is removed from the Procedure Room. Proper functioning of ICD/pacemaker should be verified following the removal of the patient from the Procedure Room.

CAUTION: The points on the Mapping System screen are for reference only.
Always confirm orientation of the catheter location with localization methodsfluoroscopy, for example - in addition to the electrograms.

CAUTION: The points and catheter tip location displayed on the Mapping System screen can be transferred to the Navigant screen. The catheter tip displayed on the Navigant screen is used only as a visual reference to aid navigation, not to identify the location of the catheter tip in the heart.

CAUTION: If the physician believes the catheter may be in the wrong location, the physician should refresh the fluoroscopy image. If a discrepancy occurs, the physician should reregister the mapping system to Navigant, remark the catheter base, and recalibrate the Cardiodrive System.

1.8.3 Notes

i) Always verify the fluoroscopy images match the current patient.
i) Before ablation, verify the field is applied to ensure proper device functionality.

1.9 Electromagnetic Compatibility Information

WARNING: The use of accessories, transducers, and cables other than those specified, with the exception of transducers and cables sold by Stereotaxis, Inc., may result in increased emissions or decreased immunity of the equipment.

WARNING: The equipment should not be used adjacent to or stacked with other equipment. If adjacent or stacked use is necessary, the equipment should be observed to verify normal operation in the configuration in which it will be used.

WARNING: This eq $\overline{\bar{u} i p m e n t ~ h a s ~ b e e n ~ t e s t e d ~ f o r ~ r a d i a t e d ~ r a d i o f r e q u e n c y ~(R F) ~}$ immunity only at selected frequencies, and use of nearby emitters at other frequencies could result in improper operation. Improper operation may consist of (1) prevention of patient treatment, (2) uncontrolled motion of magnets, and (3) uncontrolled motion of the Cardiodrive System.

Note: In addition to the requirements of 7.9.3 of the general standard for Permanently Installed Large Medical Electrical (ME) Equipment and Large ME Systems for which the exemption specified in 8.6 from the testing requirements of IEC 61000-4-3 is used, this technical description includes the following information:

Following are the frequencies and modulations used to test the Immunity of the ME Equipment or ME System:

- 52.5 Mhz
- 467Mhz
- 144 Mhz
- 470 Mhz
- 433 Mhz
- 1.2 Ghz
- 448 Mhz
- 2.4 Ghz
- 452 Mhz
- 5.0 Ghz

1.9.1 Emissions

The equipment is intended for use in the electromagnetic environment specified in the following tables. The customer or the user of the equipment should ensure that it is used in such an environment. The following table provides guidance and Stereotaxis' declaration on electromagnetic $\boldsymbol{e m i s s i o n s}$ for the equipment:

Emissions	Compliance	Electromagnetic environment-guidance
RF emissions CISPR 11	Group 1	The equipment uses RF energy only for its internal function. Therefore, its RF emissions are very low and are not likely to cause any interference in nearby electronic equipment.
RF emissions CISPR 11	Class A Complies	
Harmonic emissions IEC 61000-3-2		
Voltage fluctuations/ flicker emissions IEC 61000-3-3		

WARNING: The EMISSIONS characteristics of this equipment make it suitable for use in industrial and hospital (CISPR 11 class A) settings. If it is used in a residential environment (for which CISPR 11 class B is normally required), this equipment might not offer adequate protection to radio-frequency communication services. The user might need to take mitigation measures, such as relocating or re-orienting the equipment.

1.9.2 Immunity-General electromagnetic effects

The following table provides guidance and Stereotaxis' declaration on electromagnetic immииity regarding general electromagnetic effects for the equipment:

$\underset{\text { test }}{\text { Immunity }}$	IEC 60601 test level*	Compliance level*	Electromagnetic environment-guidance
Electrostatic discharge (ESD) IEC 61000-4-2	$\begin{aligned} & \pm 8 \mathrm{kV} \text { contact } \\ & \pm 2,4,8 \& 15 \mathrm{kV} \\ & \text { air } \end{aligned}$	$\begin{aligned} & \pm 8 \mathrm{kV} \text { contact } \\ & \pm 2,4,8 \& 15 \mathrm{kV} \\ & \text { air } \end{aligned}$	Floors should be wood, concrete, or ceramic tile. If floors are covered with synthetic material, the relative humidity should be at least 30%.
Electrical fast transient/burst I EC 61000-4-4	$\pm 2 \mathrm{kV}$ for power supply lines $\pm 1 \mathrm{kV}$ for input/output lines	$\pm 2 \mathrm{kV}$ for power supply lines $\pm 1 \mathrm{kV}$ for input/output lines	Mains power quality should be that of a typical commercial or hospital environment.
Surge IEC 61000-4-5	$\begin{aligned} & \pm 1 \mathrm{kV} \text { line(s) to } \\ & \text { line(s) } \\ & \pm 2 \mathrm{kV} \text { line(s) to } \\ & \text { earth } \end{aligned}$	$\begin{aligned} & \pm 1 \mathrm{kV} \text { line(s) to } \\ & \text { line(s) } \\ & \pm 2 \mathrm{kV} \text { line(s) to } \\ & \text { earth } \end{aligned}$	Mains power quality should be that of a typical commercial or hospital environment.
Voltage dips, short interruptions and voltage variations on power supply input lines IEC 61000-4-11	$<5 \% U_{\text {T }}$ (100% dip in $U_{\text {t }}$) for 0.5 cycle 40 \% U (60% dip in U_{T}) for 5 cycles $70 \% U_{\mathrm{T}}$ (30% dip in U_{T}) for 25 cycles $<5 \% U_{\text {T }}$ (>95 \% dip in U_{T}) for 5 s	$<5 \% U_{\text {T }}$ (100% dip in U_{t}) for 0.5 cycle $40 \% U_{\mathrm{T}}$ (60% dip in U_{T}) for 5 cycles $70 \% U_{\text {т }}$ (30% dip in U_{T}) for 25 cycles $<5 \% U_{\text {т }}$ ($>95 \%$ dip in $U_{\text {t }}$) for 5 s	Mains power quality should be that of a typical commercial or hospital environment. If the user of the equipment requires continued operation during power mains interruptions, it is recommended that the equipment be powered from an uninterruptible power supply or a battery.
Power frequency ($50 / 60 \mathrm{~Hz}$) magnetic field IEC 61000-4-8	$30 \mathrm{~A} / \mathrm{m}$	$30 \mathrm{~A} / \mathrm{m}$	Power frequency magnetic fields should be at levels characteristic of a typical location in a typical commercial or hospital environment.

[^0]
1.9.3 Immunity-RF interference

The following table provides guidance and Stereotaxis' declaration on electromagnetic immunity regarding radiofrequency (RF) for the equipment:

Note 1: At 80 MHz and 800 MHz , the higher frequency range applies.
Note 2: These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects, and people.
a Field strengths from fixed transmitters, such as base stations for radio (cellular/cordless) telephones and land mobile radios, amateur radio, AM and FM radio broadcast, and TV broadcast cannot be predicted theoretically with accuracy. To assess the electromagnetic environment due to fixed RF transmitters, an electromagnetic site survey should be considered. If the measured field strength in the location in which the equipment is used exceeds the applicable RF compliance level above, the equipment should be observed to verify normal operation. If abnormal performance is observed, additional measures may be necessary, such as re-orienting or relocating the equipment.
b Over the frequency range 150 kHz to 80 MHz , field strengths should be less than $3 \mathrm{~V} / \mathrm{m}$.

1.9.4 Separation distances

The equipment is intended for use in the electromagnetic environment in which radiated RF disturbances are controlled. The customer or the user of the equipment can help prevent electromagnetic interference by maintaining a minimum distance between portable and mobile RF communications equipment (transmitters) and the equipment as recommended in the following table, according to the maximum output power of the communications equipment.

The table provides recommended separation distances between portable and mobile RF communications equipment and the equipment.

Rated maximum output power of transmitter* W	Separation distance according to frequency of transmitter m		
	150 kHz to $80 \mathbf{M H z}$ $d=1.2 \sqrt{ } P$	80 MHz to 800 MHz $d=1.2 \sqrt{ } P$	800 MHz t0 2.5 GHz $d=2.3 \sqrt{ } P$
0.01	0.12	0.12	0.23
0.1	0.38	0.38	0.73
1	1.2	1.2	2.3
10	3.8	3.8	7.3
100	12	12	23

* For transmitters rated at a maximum output power not listed above, the recommended separation distance d in meters (m) can be estimated using the equation applicable to the frequency of the transmitter, where P is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer.

Note 1: At 80 MHz and 800 MHz , the separation distance for the higher frequency range applies. Note 2: These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects, and people.

WARNING: Portable RF communications equipment (including peripherals such as antenna cables and external antennas) should be used no closer than 30 cm (12 inches) to any part of the equipment, including cables specified by Stereotaxis, Inc.
i) Note: If there are Electromagnetic Compatibility (EMC) issues with the equipment, please contact Stereotaxis Service. Otherwise, there are no specific service requirements to maintain EMC integrity.

2 Hardware

The iCONNECT System gathers impedance values in relation to electrode connections. The unaltered values are then sent through the iCONNECT Electronics Hub to Navigant where impedance is measured and contact is determined.

2.1 Electronics Hub

The iCONNECT Electronics Hub (Figure 1) has connection points for catheter cables and mapping system/ablation generators. The red port is for the catheter cable and the blue port is for the mapping System or ablation generator cable.

Figure 1. iCONNECT Electronics Hub

2.2 Connection Cables

The iCONNECT System offers use of two sets of connection cables (Figure 2), one for the connection between iCONNECT and the catheter, Catheter Cables, and one for connection between iCONNECT and the mapping and/or ablation system, System Cables. Catheter cables are provided sterile, with the ability to be resterilized. See Table 1 and Table 2 for a list of catheter and system cables and possible connections.

Figure 2. Connection Cable

Table 1. Catheter Cables (Sterile)

Connection	Catalogue Number
iCONNECT - Celsius	$001-009071-1$
iCONNECT - Magnoflush	$001-009073-1$

Table 2. System Cables (Non-sterile)

Connection	Catalogue Number
iCONNECT - CARTO	$001-009075-1$
iCONNECT - SmartAblate	$001-009076-1$
iCONNECT - Maestro	$001-009077-1$
iCONNECT - Stockert	$001-009078-1$
iCONNECT - Ampere	$001-009079-1$
iCONNECT - HAT500	$001-009080-1$
iCONNECT - Navistar Adapter	$001-009081-1$
iCONNECT - SmartAblate - EnSite	$001-009091-1$
iCONNECT - HAT500 - EnSite	$001-009092-1$

2.3 Installation

Below are instructions for connecting the iCONNECT Electronics Hub (Figure 3) to the catheter, mapping system, and/or ablation generator. Refer to Figure 3 and Figure 4 while following the steps.

Installing the iCONNECT System is a joint venture between the customer and Stereotaxis. Step 1 must be performed by a Stereotaxis Field Service representative. All subsequent steps can by carried out by the customer.

Figure 3. iCONNECT Electronics Hub with connector and LED location identifiers

1. The Stereotaxis Field Service representative will connect the Ethernet cable (P/N 072-011422-1) from A15-J22 of the RMNS cabinet to J1 of the electronics hub. The Ethernet cable provides power and communication for the iCONNECT System.
2. To connect the catheter cable, insert the connector of the catheter cable in the red $\mathbf{J} \mathbf{2}$ socket of the electronics hub and in the ablation catheter in accordance with the information on the cable plugs.
3. If using a Navistar Adapter Cable, insert the connector of the cable in the red J2 socket of the electronics hub. The opposite end will connect to the Biosense Webster Interface Cable C5MHNAVMHS. The free, unconnected end of the Interface Cable connects to the NAVISTAR® RMT Catheter or NAVISTAR® THERMOCOOL® RMT Catheter.
a. It is important to note that if a Navistar Adapter Cable is used, an Interface Cable is needed and must be ordered through Biosense Webster.
4. To connect the system cable, insert the connector of the system cable in the blue $\mathbf{J} 3$ socket of the electronics hub and in the RF ablation device or the external connection box for the mapping system.
5. Verify the LEDs are correct according to Table 3.
(i) Note: For emphasis, the location of the LEDs is outlined in an orange rectangle in Figure 3.

Revision: B

Figure 4. iCONNECT System hardware connectivity

After completing all connections (Figure 4), the external LEDs (Figure 5) on the iCONNECT Electronics Hub box should light as indicated in Table 3.

Figure 5. iCONNECT System LEDs (example)

Table 3. iCONNECT System LED indicators

LED	Action
1	Red LED: If lit, indicates error.
2	Starts blinking after a few seconds, indicating processor is active.
3	Final green LED to light, indicating network connectivity to Navigant System.
4	Should light when iCONNECT Ethernet cable is connected.
5	Should light when iCONNECT Ethernet cable is connected.
6	Should light when iCONNECT Ethernet cable is connected.

3 Software

The iCONNECT System is accompanied by software enhancements that measure the level of tip-to-tissue contact and indicate hardware status. iCONNECT communicates with Navigant which indicates the level of contact.

3.1 Contact Indication

To indicate contact, the starburst has three states:

- Optimal Contact (Figure 6, left)
- In Contact (Figure 6, right)
- No Contact: No starburst

Figure 6. Examples of starburst in Optimal Contact (left) and In Contact (right)

When the catheter is in contact with the cardiac wall, the Navigant screen displays a "starburst" effect, as indicated (O) in Figure 7. The Navigant screen displays a contact graph in the lower right corner (O in Figure 7) to provide a history of cardiac contact.

This graph, or tracing, will be

- blue during Optimal Contact
- dashed during In Contact
- gray during No Contact

Figure 7. Contact graph on Navigant display (gold box outline)

Note: The gold circle and rectangle in Figure 7 are present for emphasis. They do not appear on the Navigant screen.

3.2 Impedance Graph

When the Impedance Graph feature is enabled, an iCONNECT System is connected, and a compatible catheter is positioned in the heart, a graph is shown at the bottom of Navigant's 3D window.

The Impedance Graph overlay displays two tracings (emphasized by a red rectangle in Figure 8). The first purple tracing is the resistance between the tip and electrode 3. The green tracing is the resistance between electrode 2 and 4 .

The total duration of the impedance graph is 120 seconds. The right side of the graph reflects impedance in real time, at the tip of the catheter. The dashed line at the bottom of the impedance graph represents the baseline (the range of the y-axis, measured in ohms, being 55 above baseline to 5 below baseline). The baseline is determined in real time and changes according to incoming data. The scale of the graph and y-axis are always relative to the current baseline.

Figure 8. Impedance Tracings

To enable the Impedance Tracing overlay, click on the Navigant start button and open the Settings dialog by choosing the settings menu item (Figure 9). Select the 3D window and turn on the iCONNECT Impedance Graph option. (Without connection to iCONNECT, the impedance graph will not display.)

Figure 9. Settings to enable Impedance graphs

3.3 Hardware Status Panel Display

The Navigant hardware status indicator bar shows an additional icon when the iCONNECT System feature is present (Figure 10). As shown in Figure 11, the iCONNECT System icon has three possible statuses.

Figure 10. Navigant hardware status indicator bar with iCONNECT System icon

Status
good

Status
warning

Status
error

Figure 11. iCONNECT System status icon in three states

Table 4 lists examples of the Warning and Error iCONNECT System states and the possible reasons or reported reasons:

Table 4. iCONNECT System states

State	Reason
Warning	Contact data is out of range (alert is cleared when contact data returns to correct range)
Error	Navigant System not connected to iCONNECT (alert is revoked when Navigant System connects to iCONNECT)
Error	iCONNECT reporting error (alert is revoked when device reports that error has been cleared)

4 Maintenance

4.1 Cleaning

Do not autoclave or submerge the iCONNECT Electronics Hub. The iCONNECT Electronics Hub and cables are designed to be wiped down with a cloth or swab dampened in pH neutral, EPA-approved hospital grade solutions.

4.2 Sterilization of Cables

The iCONNECT Catheter Cables will be supplied sterile. Please refer to the respective catheter cable IFU for more information regarding sterility and resterilization methods of the cables.

5 Troubleshooting

If you need assistance with any of the solutions in the following table, call the TeleRobotic Support Team (TST) at one of the numbers in the following section.

(i)

Note: For questions regarding non-Stereotaxis products, refer to the respective User Guides or IFUs.

If iCONNECT is still not operating properly after troubleshooting and ensuring all connectors are attached correctly, call the TeleRobotic Support Team for further help:

www.stereotaxis.com	
4320 Forest Park Avenue, Suite 100	$1-314-678-6200$
St. Louis, MO 63108	$1-866-269-5268$ (Toll free in US)

Appendix A: CARTO System Cable and Navistar Adapter Cable

Instructions for Use

[^0]: * U_{T} is the a.c. mains voltage before application of the test level.

